Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

May C. Copsey,^a Maravanji S. Balakrishna^b and Tristram Chivers^a*

^aDepartment of Chemistry, University of Calgary, 2500 University Drive North West, Calgary, Alberta, Canada T2N 1N4, and ^bDepartment of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India

Correspondence e-mail: chivers@ucalgary.ca

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.004 Å R factor = 0.045 wR factor = 0.117 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,1-Bis(*tert*-butylamido)-3,3,5,5-tetraphenylcyclotrisiloxane

The title compound, $C_{32}H_{40}N_2O_3Si_3$ or $(Ph_2SiO)_2OSi-(NH-^tBu)_2$, was synthesized by the *in situ* reaction of $[Ph_2Si(OH)]_2O$ with two equivalents of ⁿBuLi, followed by the addition of $Cl_2Si(NH-^tBu)_2$. The addition of *tert*-butyl-amide substituents to one of the Si centres causes a slight distortion of the planar cyclotrisiloxane ring.

Received 2 June 2006 Accepted 7 June 2006

Comment

A successful route to the preparation of polysiloxanes is the ring-opening polymerization of cyclotrisiloxanes. The relief of ring strain in the six-membered ring is thought to be the driving force for this reaction. This method has produced high molecular weight polymers, with a low molecular-weight distribution and few cyclic by-products (Beckmann *et al.*, 2002). Here, we report the synthesis and structural characterization of a new amido-substituted cyclotrisiloxane, (Ph₂SiO)₂OSi(NH-^tBu)₂, (I) (Fig. 1).

Complex (I) contains a six-membered Si₃O₃ ring. The Si centres all display distorted tetrahedral geometry. Two of the Si centres are additionally bonded to two phenyl rings, while the third, atom Si3, has two *tert*-butylamido substituents. The Si–O bond lengths fall in the narrow range 1.635 (2)–1.652 (2) Å, similar to the corresponding distances in the hexaphenylcyclotrisiloxane structure, (Ph₂SiO)₃ (Ziemer *et al.*, 1998). The Si₃O₃ ring in (I) is slightly distorted from planarity, with the greatest deviations being 0.186 and 0.139 Å for atoms O3 and Si3, respectively. The related *tert*-butoxy-substituted cyclotrisiloxane, (Ph₂SiO)₂OSi(O-'Bu)₂, has been reported (Beckmann *et al.*, 2002) and also shows a slight distortion from planarity in the central six-membered ring.

Experimental

To a solution of $[Ph_2Si(OH)]_2O(1.21 \text{ g}, 2.9 \text{ mmol})$ in tetrahydrofuran (20 ml), ^{*n*}BuLi (2.33 ml, 5.8 mmol; 2.5 *M* solution in *n*-hexanes) was added at 273 K and the mixture was stirred for 2 h. A solution of $Cl_2Si(NH-^{t}Bu)_2$ (0.71 g, 2.9 mmol) in diethyl ether (15 ml) was added

All rights reserved

© 2006 International Union of Crystallography

organic papers

dropwise at 273 K. The cloudy reaction mixture turned to a clear colourless solution. The solution was allowed to warm to room temperature and was then stirred for 4 h. The solvent was removed under reduced pressure, producing a sticky residue. The product was extracted with diethyl ether (20 ml) and hexane was added (3 ml). Storage of the solution at 263 K yielded colourless blocks of (I) (1.2 g, 72%; m.p.: 393–395 K). Analysis, calculated for $C_{32}H_{40}Si_3N_2O_3$: C 65.70, H 6.89, N 4.78%; found: C 65.31, H 6.97, N 4.67%. Spectroscopic analysis: ¹H NMR (300 MHz, 298 K, toluene- d_8 , δ , p.p.m.): 7.87, 7.18 (m, 20 H, C_6H_5), 2.12 (s, 2 H, NH), 1.17 [s, 18 H, C(CH₃)₃]; ¹³C NMR (300 MHz, 298 K, THF- d_8 , δ , p.p.m.): 136.1–125.3 (C_6H_5), 54.4 [C(CH₃)₃], 38.9, [C(CH₃)₃]; ²⁹Si NMR (300 MHz, 298 K, toluene- d_8 , δ , p.p.m.): -34.6, -66.6 [s, SiPh₂, Si(NH-^{*i*}Bu)₂].

Z = 4

 $D_x = 1.199 \text{ Mg m}^{-3}$ Mo *K* α radiation

 $\mu = 0.18 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.040$

 $\theta_{\rm max} = 25.0^\circ$

Block, colourless

 $0.20 \times 0.20 \times 0.10 \; \mathrm{mm}$

10563 measured reflections

5714 independent reflections

4160 reflections with $I > 2\sigma(I)$

Crystal data

 $C_{32}H_{40}N_2O_3Si_3$ $M_r = 584.93$ Monoclinic, $P2_1/n$ a = 10.246 (2) Å b = 15.759 (3) Å c = 20.087 (4) Å $\beta = 92.94$ (3)° V = 3239.1 (11) Å³

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.965, T_{max} = 0.982$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.117$ S = 1.025714 reflections 367 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0481P)^{2} + 1.5999P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Si1-O3	1.6349 (16)	Si3-O3	1.6382 (16)
Si1-O1	1.6366 (17)	Si3-O2	1.6518 (18)
Si2-O1	1.6363 (16)	Si3-N1	1.691 (2)
Si2-O2	1.6386 (16)	Si3-N2	1.694 (2)
O3-Si3-O2	104.96 (8)	O3-Si3-N2	104.95 (10)
O3-Si3-N1	112.27 (10)	O2-Si3-N2	112.79 (10)
O2-Si3-N1	110.07 (10)	N1-Si3-N2	111.56 (11)

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms, except for those on N atoms, have been omitted for clarity.

All H atoms were refined in geometrically idealized positions with $U_{\rm iso}({\rm H}) = 1.2-1.5 U_{\rm eq}$ (parent atom). Atoms H1A and H2A were first located in an electron difference map, before being constrained to their parent N atoms. C—H distances are in the range 0.95–0.98 Å. The N1–H1A and N2–H2A distances are 0.88 Å.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the University of Calgary and the Natural Science and Engineering Research Council (Canada) for funding.

References

Beckmann, J., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2002). Z. Anorg. Allg. Chem. 628, 2948–2953.

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Ziemer, B., Backer, M. & Auner, N. (1998). Acta Cryst. C54, 1111-1113.